
Catalysis-driven aggregate growth

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 3967

(http://iopscience.iop.org/0305-4470/37/13/004)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 17:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 3967–3978 PII: S0305-4470(04)70512-0

Catalysis-driven aggregate growth

Jianhong Ke and Zhenquan Lin

School of Physics and Electronic Information, Wenzhou Normal College, Wenzhou 325027,
People’s Republic of China

E-mail: kejianhong@yahoo.com.cn

Received 14 October 2003, in final form 28 January 2004
Published 17 March 2004
Online at stacks.iop.org/JPhysA/37/3967 (DOI: 10.1088/0305-4470/37/13/004)

Abstract
We propose two-species catalysis-driven aggregation models in which
coagulation of one species occurs only in the presence of another species
(the catalyst). By means of generalized Smoluchovski rate equations, we study
the kinetics of the system with the rate kernel KA(i; j ; l) ∝ lυ , at which two
A clusters of size i and j bond together under the catalytic action of a B cluster
of size l. The results show that the cluster mass distribution of species A obeys
a conventional scaling law in the υ � 0 case while it may satisfy the modified
scaling form in other cases. Moreover, it is found that the scaling exponents are
nonuniversal and dependent on the value of index υ in most cases. On the other
hand, we also investigate the scaling behaviour of the mutually catalysis-driven
aggregate growth. For the system with the rate kernel KA(i; j ; l) ∝ lυ1 and
KB(i; j ; l) ∝ lυ2 , its kinetics depends crucially on the values of the indices υ1

and υ2. Either species scales according to the conventional or modified form in
most cases; while the system may undergo a gelation transition in some special
cases.

PACS numbers: 82.20.−w, 68.43.Jk, 82.30.Vy, 89.75.Da

1. Introduction

The understanding of aggregation phenomena is of considerable importance in many basic
and applied problems such as atmospheric aerosols [1], star formation [2] and gelation [3].
In the last few decades, the kinetics of cluster growth through irreversible aggregation has
been extensively studied by many sophisticated models [4–10]. It was found that the mass
distribution of the aggregates may approach a scaling form in the long-time limit [5, 6].
Most of these research works focused attention on the binary self-coalescence scheme,
Ai + Aj → Ai+j , where Ai denotes a cluster consisting of i monomers. That is, the clusters Ai

and Aj can bond spontaneously and form a larger cluster Ai+j . Moreover, Ispolatov et al [11]
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and Leyvraz et al [12] proposed a migration-driven growth mechanism which can be described
by the scheme Ai +Aj → Ai−1 +Aj+1 (i � j). This different mechanism can provide a natural
description for the evolution of city populations, and the results showed that this mechanism
gives rise to kinetic behaviour quite different from conventional aggregation processes
[11–13]. In addition, there also exist some other classes of growth mechanisms in physics and
in social science. For example, in a variety of situations, some species are chemically stable
and nonreactive under normal physical conditions, and they may enter into reaction only in
the presence of a catalytic substance. Burlatsky et al [14] and Oshanin et al [15] proposed
a three-molecule catalytically activated reaction model (CARM), in which the elementary
reaction step is A + B + C → product (here A and B represent two different types of stable
species and C is a catalytic substance), and they incisively analysed its kinetics by extending
the Smoluchowski approach. Recently, many developments have made the catalytic reaction
mechanism well understood [16, 17]. Motivated by these works, we proposed two distinct
catalysis-driven aggregation models with constant rate kernels [18, 19]. The results exhibited
that the long-time evolution of the system also obeys a scaling law, but which is somewhat
different from the above-mentioned conventional aggregation. All these different mechanisms
unfold very rich kinetic behaviour of the aggregation systems.

In this work, we thoroughly investigate the kinetics of the catalysis-driven aggregation
models with a general size-dependent rate kernel. There are two types of species in our system,
species A and B. Species A is chemically stable and the clusters of this type cannot coagulate
by themselves; however, two A clusters can merge with the help of a B cluster. Thus the system
evolves according to the catalytic reaction scheme as follows. The first elementary reaction
step is a reversible reaction between a pair of A and B clusters, Ai +Bl � AiBl , and the second
step is an irreversible reaction only between the A and AB clusters, AiBl +Aj → Ai+j +Bl . It
is well known that the reversible reaction may reach its steady state at a very rapid rate. Thus,
the catalytic reaction is controlled by the second step. The whole catalytic reaction then reads

Ai + Aj + Bl

KA(i;j ;l)−→ Ai+j + Bl , with a size-dependent reaction rate kernel KA(i; j ; l). On
the other hand, there also exist some special situations in which both species are non-reactive
but one species is the catalyst for the aggregation reaction of another one [19]. Then the

catalytic reaction for species A is Ai + Aj + Bl

KA(i;j ;l)−→ Ai+j + Bl , while that for species B

is Bi + Bj + Al

KB(i;j ;l)−→ Bi+j + Al . In this paper, we shall investigate the dependence of the
kinetics of the aggregation system on the catalysis. The catalytically activated processes can
contribute to produce required products from the species which is chemically stable under
normal conditions and are thus of great practical and theoretical significance.

We shall investigate our models in the mean-field limit. The mean-field assumption
neglects the fluctuations in the densities of the reactants and, therefore, applies to the case in
which the space dimension d of the system is equal to or greater than a critical dimension dc. For
the irreversible aggregation system, it is found that dc = 2 [6, 7]. In our models, the controlling
reaction is also an irreversible binary aggregation-like reaction. Thus, it is reasonable that
the critical dimension dc of our system may also be equal to 2. Based on the mean-field
theory, we have derived the asymptotic solutions for the cluster mass distributions in these
catalysis-driven aggregation processes. The results show that the cluster mass distribution of
the system may satisfy a conventional or modified scaling law, which depends strongly on
the details of the rate kernel. As for the d < dc case, the particle coalescence model (PCM)
(see, e.g., [7, 20]) may be used to study the catalytically activated aggregate growth. Since the
clusters in the PCM are defined to be single lattice sites and the aggregation reaction occurs
only when two or more clusters occupy the same lattice site, the PCM may be considered as a
model of aggregate growth through the ‘catalytic action’ of lattice sites.
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The paper is organized as follows. In section 2, we describe a catalysis-driven aggregation
model in which the irreversible growth of one species is driven by another species and
investigate the corresponding mean-field rate equations to obtain the cluster mass distributions.
We then study the kinetic behaviour of a two-species mutually catalysis-driven aggregation
model in section 3. A brief summary is given in section 4.

2. The model of irreversible one-species growth driven by the catalyst

We first investigate the catalysis-driven aggregation processes in which A clusters coagulate
with the help of the catalyst B. The theoretical approach to the aggregation processes is based
on the mean-field rate equation, which assumes that the reaction proceeds at a rate proportional
to the reactant concentrations. The concentrations of A and B clusters of k-mers are denoted as
ak and bk , respectively. As we aim to investigate the dependence of the kinetics of our system
on the catalyst, we assume that the rate kernel depends only on the details of the catalyst. For
the cases in which both species A and B are polymers and bonding between any two polymers
takes place only at their surfaces, one may consider KA(i; j ; l) = sl , where sl represents the
effective catalytic surface area of a B cluster of size l. For large l, sl ∼ lυ (here υ denotes
a geometric index characterizing the catalytic surface of an l-mer, e.g., for compact clusters
υ = 2/3) [21], and it is found that 0 � υ � 1. For some other situations, coagulation of the
clusters does not merely depend on their geometric surfaces and thus the rate exponent υ may
not have the above-mentioned constraint. For example, in economics and social science, the
overall rate of aggregation between two generalized ‘clusters’(e.g., population centres) may
also vary as a power law in some scale factor (see [12] and references therein). In order to
obtain the explicit solutions of the mean-field rate equations and analyse the scaling properties
of the catalysis-driven aggregate growth, we consider here a simple kernel KA(i; j ; l) = I1l

υ

(υ is a constant) for all l. On the other hand, we assume that the catalyst may coagulate by

itself, Bi + Bj

J(i;j)−→ Bi+j , and the self-coagulation rate kernel J (i, j) is set to a constant I2. It
is obvious that for the υ > 1 case, self-coagulation of the catalyst may improve its catalytic
ability. Then the mean-field rate equations for the catalysis-driven aggregation processes read

dak

dt
= I1

2

∑
i+j=k

∞∑
l=1

(lυaiajbl) − I1ak

∞∑
j=1

∞∑
l=1

(lυajbl)

(1)
dbk

dt
= I2

2

∑
i+j=k

bibj − I2bk

∞∑
j=1

bj .

We consider the simplest but important case in which there only exist monomer clusters
of species A and B at t = 0 and their concentrations are equal to A0 and B0, respectively.
Then the initial condition is

ak(0) = A0δk1 bk(0) = B0δk1. (2)

The rate equations (1) can be solved with the help of ansatz [22]

ak(t) = A(t)[a(t)]k−1 bk(t) = B(t)[b(t)]k−1. (3)

Substituting equations (3) into equations (1), we can transform the rate equations (1) into the
following differential equations:

da

dt
= I1AMBυ

2

dA

dt
= −I1A

2MBυ

1 − a
(4)

db

dt
= I2B

2

dB

dt
= − I2B

2

1 − b
(5)
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with the shorthand notation MBυ(t) = ∑∞
l=1 lυbl(t). Correspondingly, the initial condition

for equations (4) and (5) becomes

a = 0 b = 0 A = A0 B = B0 at t = 0. (6)

From equations (4) and (5), one can easily find that MA1(t) = ∑∞
k=1 kak(t) = A/(1 − a)2 ≡

A0 and MB1(t) = ∑∞
k=1 kbk(t) = B/(1 − b)2 ≡ B0. Hence, both species A and B obey the

mass observation law. It is natural for our model without any consumption of the reactants.
Firstly, we discuss the evolution behaviour of the catalyst. From equations (5) one can

readily determine the exact solutions of b(t) and B(t) as follows:

b(t) = I2B0t

I2B0t + 2
B(t) = 4B0

(I2B0t + 2)2
. (7)

Thus we obtain the exact solution bk(t) for species B,

bk(t) = 4B0

(I2B0t + 2)2

(
1 − 2

I2B0t + 2

)k−1

. (8)

Approximately, equation (8) can be rewritten as

bk(t) � 4I−2
2 B−1

0 t−2 exp(−y) y = (2/I2B0)kt−1 (9)

which is valid in the region of k � 1 and t � 1. Equation (9) indicates that the cluster mass
distribution of species B approaches the scaling form [22]

ck(t) � t−w�[k/S(t)] S(t) ∝ t z (10)

where ck(t) denotes the concentration of k-mers and S(t) is the characteristic mass of such
an aggregation system. The scaling function for species B is exponential, �(x) = exp(−x);
moreover, the exponents are universal, w = 2 and z = 1. So, species B evolves as in the
single-species aggregation case, which indeed follows the way that our model is formulated.

We then turn to discuss the mass distribution of A clusters. From equations (4) we obtain

da

dt
= I1A0

2
(1 − a)2MBυ. (11)

In the long-time limit, we determine the moments of species B in several cases with different
index υ,

MBυ(t) =
∞∑
l=1

lυbl(t) �




�(1 + υ)Bυ
0

(
2B0

I2B0t + 2

)1−υ

for υ > −1

4 ln(I2B0t/2 + 1)

I2t (I2B0t + 2)
for υ = −1

4B0

(I2B0t + 2)2

∞∑
j=1

jυ for υ < −1.

(12)

We then investigate the evolution behaviour of A clusters in several different cases.
In the first case of υ > 0, one can recast equation (11) into the following equation in the

long-time limit:

da

dt
� I1�(1 + υ)A0B

υ
0

2

(
2

I2

)1−υ

(1 − a)2tυ−1. (13)

Equation (13) can be directly solved to yield

a(t) � 1 − C1t
−υ (14)
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where C1 = [
2/I1A0B

υ
0 �(υ)

]
(I2/2)1−v . Thus we obtain the asymptotic scaling solution of

ak(t) at large times,

ak(t) � A0C
2
1 t

−2υ exp(−x) x = C1kt−υ. (15)

Equation (15) indicates that for this case, the cluster mass distribution of species A approaches
the conventional scaling form of equation (10) with the typical mass S(t) ∝ tυ . The exponents
are nonuniversal and dependent on the value of index υ, i.e., w = 2υ and z = υ. The results
also imply that with the help of B catalyst all the initial monomers of species A will coagulate
each other completely.

In the second case of υ = 0, from equation (13) one can derive the following asymptotic
solution:

a(t) � 1 − C2(ln t)−1 (16)

where C2 = I2/I1A0. The cluster mass distribution of species A is then obtained as follows:

ak(t) � A0C
2
2(ln t)−2 exp(−x) x = C2k(ln t)−1. (17)

This shows that the evolution behaviour of A clusters obeys a logarithm-correction scaling
form, ak(t) � (ln t)−w�{k/S[ln(t)]} with S(t) ∝ t z (also see [18]). In this case, the
coagulation of all the monomers of species A can also be accomplished finally.

In the third case of 0 > υ > −1, we find

a(t) � C3 − C4t
υ (18)

where C3 = 1 − {1 + 2I1A0B0
∫ ∞

0 dt (I2B0t + 2)−2 ∑∞
j=1 jυ[I2B0t/(I2B0t + 2)]j−1}−1 and

C4 = −(1 − C3)
2/C1. Thus we obtain the asymptotic scaling solution

ak(t) � A0(1 − C3)
2Ck

3 exp(−x) x = (C4/C3)ktv. (19)

Equation (19) indicates that species A does not scale according to the conventional
definition (10) and the cluster mass distribution satisfies the modified scaling form ak(t) �
hkt−w�[k/S(t)] (here h is a constant and 1 > h > 0). In this case, the exponents are w = 0
and z = −υ. The modified scaling form also indicates that two different mass scales are
associated with species A. One is a growing scale S(t) ∝ t−υ , which is forced by the catalyst.
Another is a time-independent scale S = 1/(1−C3), which dominates the evolution behaviour
of species A in the long-time limit. Moreover, it can be concluded from equation (19) that
all Ak clusters (k = 1, 2, . . .) can survive at the end. Hence, no matter how large the initial
concentration of the catalyst is, the catalyst cannot make all monomers of species A bond
together at the end.

In the fourth case of υ = −1, one can recast equation (11) as

da

dt
= 2I1A0(1 − a)2

I2t (I2B0t + 2)
ln(I2B0t/2 + 1). (20)

Equation (20) can be solved exactly. In the long-time limit, we obtain

a(t) � C5 − C6t
−1 ln t (21)

where C5 = 1 − {1 +
∫ ∞

0 dt[2I1A0 ln(I2B0t/2 + 1)/I2t (I2B0t + 2)]}−1 and C6 = 2I1A0(1 −
C5)

2
/
I 2

2 B0. Thus we find that the cluster mass distribution of species A approaches the
modified scaling form as follows:

ak(t) � A0(1 − C5)
2Ck

5 exp(−x) x = (C6/C5)kt−1 ln t. (22)

For this case, the growing scale is S(t) ∝ t (ln t)−1 while the time-independent scale is
S = 1/(1 − C5). This case is similar to the above third case. All A clusters (the smaller or
the larger clusters) can be conserved by the dynamics of the system.
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Table 1. Summary of the results of the first model.

Case The cluster mass distribution of species A

υ > 0 Obeys the conventional scaling law with the exponents w = 2υ and z = υ.
υ = 0 Obeys the logarithm-correction scaling law with the exponents w = 2 and z = 1.
0 > υ > −1 Satisfies the modified scaling form with the growing scale S(t) ∝ t−υ .
υ = −1 Satisfies the modified scaling form with the growing scale S(t) ∝ t (ln t)−1.
υ < −1 Satisfies the modified scaling form with the growing scale S(t) ∝ t .

Finally, we investigate the last case of υ < −1. From equations (11) and (12) we derive
the asymptotic solution of a(t) at large times,

a(t) � C3 − C7t
−1 (23)

where C7 = 2I1A0(1 − C3)
2 ∑∞

j=1 jυ
/
I 2

2 B0. In this case, species A evolves according to the
modified scaling form

ak(t) � A0(1 − C3)
2Ck

3 exp(−x) x = (C7/C3)kt−1 (24)

with the time-dependent scale S(t) ∝ t and the time-independent scale S = 1/(1 − C3). The
scaling exponents are universal, w = 0 and z = 1. This shows that all the systems with index
υ in the range of υ < −1 evolve in a similar way. To verify this result, we also investigate the
special υ = −∞ case in which the aggregation of A clusters is driven only by the monomers
of the catalyst. By employing the above technique we solve equations (1) exactly and also
obtain the same scaling solution (24) of the cluster mass distribution for this special case,
where C3 = 1 − (1 + I1A0/I2)

−1 and C7 = 2I1A0(1 − C3)
2
/
I 2

2 B0.
To sum up, we investigate the kinetics of the catalysis-driven aggregation model with a

rate kernel KA(i, j, l) ∝ lυ and obtain the asymptotic solution of the cluster mass distribution
in several cases with different index υ. A summary of the results is illustrated in table 1.

3. The model of two-species mutually catalysis-driven aggregation processes

In this section, we investigate the kinetics of a two-species mutually catalysis-driven
aggregation model. The concentrations of A and B clusters of k-mers are also denoted as
ak and bk , respectively. We assume that the catalytic aggregation rates are KA(i; j ; l) = I1l

υ1

and KB(i; j ; l) = I2l
υ2 (υ1 and υ2 are two constants). Then the mean-field rate equations for

this catalysis-driven aggregation system read

dak

dt
= I1

2

∑
i+j=k

∞∑
l=1

(lυ2aiajbl) − I1ak

∞∑
j=1

∞∑
l=1

(lυ2ajbl)

dbk

dt
= I2

2

∑
i+j=k

∞∑
l=1

(lυ1bibjal) − I2bk

∞∑
j=1

∞∑
l=1

(lυ1bjal).

(25)

Under the monodisperse initial condition (2), with the help of anastz (3) we can recast
equations (25) as the following equations:

da

dt
= I1AMBυ2

2

dA

dt
= −I1A

2MBυ2

1 − a

db

dt
= I2BMAυ1

2

dB

dt
= −I2B

2MAυ1

1 − b

(26)
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with the shorthand notation MAυ1(t) = ∑∞
j=1 jυ1aj (t) and MBυ2(t) = ∑∞

j=1 jυ2bj (t). In this
model, both species A and B obey the mass observation law, i.e., MA1 = ∑∞

j=1 jaj ≡ A0 and
MB1 = ∑∞

j=1 jbj ≡ B0. Thus, equations (26) reduce to

da

dt
= I1A0(1 − a)2MBυ2

2

db

dt
= I2B0(1 − b)2MAυ1

2
. (27)

From equations (27) one can derive the following identical equation:

I2

∞∑
i=1

iυ1−1ai ≡ I1

∞∑
j=1

jυ2−1bj . (28)

The system is assumed to reach its steady state at t → ∞ and its steady condition is then
given as follows:

da

dt
= I1A0(1 − a)2MBυ2

2
→ 0

db

dt
= I2B0(1 − b)2MAυ1

2
→ 0. (29)

Thus we can conclude that either a → 1 or b → 1 at t → ∞. Without any loss of generality,
we assume υ1 � υ2. We then discuss the solutions of equations (27) in several different cases.

3.1. υ1 > 0 and υ2 > 0 case

It can be concluded from equations (28) and (29) that for this case, a → 1 and b → 1 at
t � 1. In the long-time limit, equations (27) can be rewritten asymptotically as

da

dt
� C8(1 − a)2+υ1(1−υ2)/υ2

db

dt
� C9(1 − b)2+υ2(1−υ1)/υ1 (30)

where C8 = [I1A0B0�(1 + υ2)/2][I2�(υ1)/I1�(υ2)](υ2−1)/υ2 and C9 = [I2A0B0�(1 + υ1)/

2][I1�(υ2)/I2�(υ1)](υ1−1)/υ1 . Equations (30) show that the solutions of a(t) and b(t) depend
crucially on the value of 1/υ1 + 1/υ2.

When 1/υ1 + 1/υ2 > 1, we solve equations (30) and then obtain the scaling solutions of
the cluster mass distributions

ak(t) � A0C
2
10t

−2γ1 exp(−x) x = C10kt−γ1

bk(t) � B0C
2
11t

−2γ2 exp(−y) y = C11kt−γ2
(31)

where γ1 = υ2/(υ1 + υ2 − υ1υ2), γ2 = υ1/(υ1 + υ2 − υ1υ2), C10 = [(1 − υ1 + υ1/υ2)C8]−γ1

and C11 = [(1 − υ2 + υ2/υ1)C9]−γ2 . The results show that for this case, the evolution
behaviour of either species obeys the conventional scaling definition of equation (10). The
scaling exponents for species A are w = 2υ2/(υ1 + υ2 − υ1υ2) and z = υ2/(υ1 + υ2 − υ1υ2)

while those for species B are w = 2υ1/(υ1 + υ2 − υ1υ2) and z = υ1/(υ1 + υ2 − υ1υ2).
These indicate that the exponents are crucially dependent on the values of indices υ1 and υ2.
Moreover, the typical mass of species A grows indefinitely as tυ2/(υ1+υ2−υ1υ2) while that of
species B grows as tυ1/(υ1+υ2−υ1υ2). In the special case of υ1 = υ2 = 1, the rate equations (27)
can be solved exactly and one can find that the cluster mass distribution of either species
evolves according to the conventional scaling form (10) with the constant exponents w = 2
and z = 1; that is to say, both species scale as in the two-species non-interacting aggregation
system. The results also imply that all the initial monomer clusters of one species can coagulate
together under the catalytic action of another species.

When 1/υ1 + 1/υ2 = 1, the cluster mass distributions of species A and B satisfy the
exponential-correction scaling forms

ak(t) � A0 exp(−2C8t) exp(−x) x = k exp(−C8t)

bk(t) � B0 exp(−2C9t) exp(−y) y = k exp(−C9t).
(32)
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The results show that the governing exponents C8 and C9 are nonuniversal and depend on the
details of the rate kernel as well as the initial concentrations of both species. The typical mass
of species A grows rapidly as exp(C8t) while that of species B grows as exp(C9t). In this
case, the clusters of either type can also coagulate completely at the end, which is similar to
the result in the above 1/υ1 + 1/υ2 > 1 case.

When 1/υ1 + 1/υ2 < 1, we find that the system will come to a gelation transition after
a finite time (see, e.g., [21]). The critical time tc (gel point) can be given by the expression
tc = (2/I1A0B0)

∫ 1
0 dx

[
(1 − x)2(1 − y)2 ∑

j (j
υ2yj−1)

]
(the relation between x and y is

I2
∑

i i
υ1−1xi = I1

∑
j jυ2−1yj ). In this work, we only devote ourselves to the nongelling

system and defer the thorough investigation of this gelation case to a future work.
Hence, only when 1/υ1 + 1/υ2 � 1, the system has a permanent evolution in time and the

typical mass of either species is always growing.

3.2. υ1 > 0 and υ2 = 0 case

In this case, we also find a → 1 and b → 1 at t → ∞. By solving equations (27) we obtain
the scaling solutions

ak(t) � A0C
2
12(ln t)−2/υ1 exp(−x) x = C12k(ln t)−1/υ1

bk(t) � B0C
2
13t

−2(ln t)2(1−υ1)/υ1 exp(−y) y = C13kt−1(ln t)(1−υ1)/υ1
(33)

where C12 = [I1/I2�(υ1)]−1/υ1 and C13 = 2/I1A0B0υ1C12. Equations (33) show that the
typical mass of species A grows as (ln t)1/υ1 while that of species B grows as t (ln t)(υ1−1)/υ1 .
It is well known that for an irreversible aggregation system with a constant rate kernel, the
typical mass grows as t. As contrasted with the typical mass of the general aggregation system,
the typical mass of species B in this system has a positive logarithm-correction (υ1 > 1) or
negative one (υ1 < 1). In this case, the initial monomer clusters of either species can also
bond together completely at the end.

3.3. υ1 = υ2 = 0 case

In this special case, equations (27) can be exactly solved. The solutions of the cluster mass
distributions are then determined as follows:

ak(t) � A0(C14t)
−2I1/(I1+I2) exp(−x) x = k(C14t)

−I1/(I1+I2)

bk(t) � B0(C14t)
−2I2/(I1+I2) exp(−y) y = k(C14t)

−I2/(I1+I2)
(34)

where C14 = (I1 + I2)A0B0/2. Both species scale according to the scaling form (10) with
nonuniversal exponents dependent on the values of rate coefficients I1 and I2. Moreover, we
again find that all the clusters of either type can bond together at t → ∞. These results are
identical with the corresponding results in [19].

3.4. υ1 � 0 and υ2 < 0 case

It is obvious that I2
∑∞

i=1 iυ1−1 > I1
∑∞

j=1 jυ2−1 in this case. So we have a → a1∞ and

b → 1 at → ∞, where a1∞ is a finite constant satisfying the equation I2
∑∞

i=1 iυ1−1a
j

1∞ =
I1

∑∞
j=1 jυ2−1. In the long-time limit, from equations (27) one easily obtains the scaling

solution of the cluster mass distribution of species B,

bk(t) � B0C
−2
15 t−2 exp(−y) y = C−1

15 kt−1 (35)
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where C15 = (I2A0B0/2)(1 − a1∞)2 ∑∞
j=1

(
jυ1a

j−1
1∞

)
. Equation (35) indicates that for this

case, species B evolves as in the irreversible single-species aggregation process.
Further, by inserting equation (35) into equations (27) we obtain the cluster mass

distribution of species A, which approaches the modified scaling form

ak(t) � A0(1 − a1∞)2ak
1∞ exp(−x) (36)

with the scaling variable x = C16ktυ2 for −1 < υ2 < 0, x = C17kt−1 ln t for υ2 = −1 and
x = C18kt−1 for υ2 < −1. Here the constants are C16 = −�(υ2)(I1A0B0/2a1∞)(1 −
a1∞)2C

υ2−1
15 , C17 = (I1A0B0/2a1∞)(1 − a1∞)2C−2

15 and C18 = (I1A0B0/2a1∞)(1 −
a1∞)2C−2

15

∑∞
j=1 jυ2 . For all cases with υ2 < 0, the time-independent scale for species A

takes the same form SA = 1/(1 − a1∞). Meanwhile, the time-dependent scale for species A

grows as t−υ2 in the −1 < υ2 < 0 case and as t (ln t)−1 in the υ2 = −1 case and as t in the
υ2 < −1 case. Moreover, equation (36) also exhibits that small A clusters dominate over the
large one in the long-time limit.

On the other hand, making a comparison between equations (35) and (36) shows that
all the clusters of species B will coagulate together finally while A clusters of any size (the
smaller and the larger) are conserved by the dynamics of the system.

3.5. υ1 < 0 and υ2 < 0 case

In this case, the solutions of equations (27) depend strongly on the relation between
I2

∑∞
i=1 iυ1−1 and I1

∑∞
i=1 iυ2−1. We then discuss the solutions of equations (27) in three

different subcases.

1. I2
∑∞

i=1 iυ1−1 > I1
∑∞

j=1 jυ2−1 subcase. When I2
∑∞

i=1 iυ1−1 > I1
∑∞

j=1 jυ2−1, we find
that a → const and b → 1 at t → ∞. Under this condition, by employing the above technique
we obtain the same equations (35) and (36) for the cluster mass distributions in this system.
Hence, the results of this case are identical with those in section 3.4.

2. I2
∑∞

i=1 iυ1−1 < I1
∑∞

j=1 jυ2−1 subcase. In the case of I2
∑∞

i=1 iυ1−1 < I1
∑∞

j=1 jυ2−1,
we have a → 1 and b → const at t → ∞. Let b(t = ∞) = b1∞ (b1∞ is a constant satisfying
the equality I2

∑∞
i=1 iυ1−1 = I1

∑∞
j=1 jυ2−1b

j

1∞ ). Using a similar method to that in section
3.4, we find that species A scales according to the conventional form

ak(t) � A0C19t
−2 exp(−x) y = C19kt−1 (37)

where C19 = [
(I1A0B0/2)(1 − b1∞)2 ∑∞

j=1

(
jυ2b

j−1
1∞

)]−1
. The cluster mass distribution of

species B approaches the modified scaling form

bk(t) � B0(1 − b1∞)2bk
1∞ exp(−y) (38)

with the scaling variable y ∝ ktυ1 for −1 < υ1 < 0, y ∝ kt−1 ln t for υ1 = −1 and y ∝ kt−1

for υ1 < −1. In this case, all the clusters of species A will coagulate together finally, while
the complete coagulation of B clusters cannot be fulfilled. The results indicate that this case
is in contrast to the above subcase of I2

∑∞
i=1 iυ1−1 > I1

∑∞
j=1 jυ2−1.

3. I2
∑∞

i=1 iυ1−1 = I1
∑∞

j=1 jυ2−1 subcase. In the symmetrical subcase of I2
∑∞

i=1 iυ1−1 =
I1

∑∞
j=1 jυ2−1, we have a → 1 and b → 1 at t → ∞. The evolution behaviour in this

subcase is very complicated and depends strongly on the values of indices υ1 and υ2. In order
to investigate the kinetics of this system in a transparent way, we discuss the solutions of
equations (27) in several systems as follows.
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When −1 < υ1 < 0 and −1 < υ2 < 0, one can obtain equations (31) of the cluster
mass distributions for this system. So, the results of this system are identical with those of the
system with 1/υ1 + 1/υ2 > 1 in section 3.1.

When −1 < υ1 < 0 and υ2 = −1, we obtain the scaling solutions of the cluster mass
distributions

ak(t) � A0C
2
21t

−2/(1−2υ1)(ln t)2/(1−2υ1) exp(−x)

x = C21kt−1/(1−2υ1)(ln t)1/(1−2υ1)

bk(t) � B0C
2
20t

2υ1/(1−2υ1)(ln t)−2(1−υ1)/(1−2υ1) exp(−y)

y = C20ktυ1/(1−2υ1)(ln t)−(1−υ1)/(1−2υ1)

(39)

where C20 = [υ1/(2υ1 − 1)](υ1−1)/(1−2υ1)[−I1/I2�(υ1)](υ1−1)/(1−2υ1)[I2A0B0�(υ1)(2υ1 −
1)/2]υ1/(1−2υ1) and C21 = [I1υ1C20/I2�(υ1)(1 − 2υ1)]−1/υ1 . Equations (39) indicate
that both species scale according to the logarithm-correction form. The typical mass of
species A grows indefinitely as t1/(1−2υ1)(ln t)−1/(1−2υ1) while that of species B grows as
t−υ1/(1−2υ1)(ln t)(1−υ1)/(1−2υ1). So, the clusters of one species can bond each other under the
catalytic action of another species.

When −1 < υ1 < 0 and υ2 < −1, the cluster mass distributions approach the
conventional scaling forms

ak(t) � A0C
2
22t

−2/(1−2υ1) exp(−x) x = C22kt−1/(1−2υ1)

bk(t) � B0C
2
23t

2υ1/(1−2υ1) exp(−y) y = C23ktυ1/(1−2υ1)
(40)

where C22 = [
(1 − 2υ1)A0B0I

2
2 �2(υ1)

/
2I1

∑∞
j=1 jυ2

]−1/(1−2υ1) and C23 = −I2�(υ1)C
−υ1
22

/
I1

∑∞
j=1 jυ2 . The governing exponents for species A are w = 2/(1 − 2υ1) and z = 1/

(1 − 2υ1), while those for species B are w = 2υ1/(2υ1 − 1) and z = υ1/(2υ1 − 1). These
indicate that the exponents are nonuniversal and dependent on the details of the rate kernel.
On the other hand, the typical mass of species A in this system grows as t1/(1−2υ1) and that
of species B grows as t−υ1/(1−2υ1), which indicate that all the clusters of either type can bond
together at the end.

When υ1 = υ2 = −1, we also obtain the solutions of the cluster mass distributions, which
take the logarithm-correction scaling forms as follows:

ak(t) � A0C
2
24(t ln t)−2/3 exp(−x) x = C24k(t ln t)−1/3

bk(t) � B0C
2
25(t ln t)−2/3 exp(−y) y = C25k(t ln t)−1/3

(41)

where C24 = (
I 2

2 A0B0
/

2I1
)−1/3

and C25 = (
I 2

1 A0B0
/

2I2
)−1/3

. For this system, the typical
mass of either species grows indefinitely as (t ln t)1/3, and therefore the complete coagulation
of the clusters of either type will be fulfilled finally.

When υ1 = −1 and υ2 < −1, both species also scale according to the logarithm-correction
forms

ak(t) � A0C
2
26t

−2/3(ln t)−4/3 exp(−x) x = C26kt−1/3(ln t)−2/3

bk(t) � B0C
2
27t

−2/3(ln t)2/3 exp(−y) y = C27kt−1/3(ln t)1/3
(42)

where C26 = (
I 2

2 A0B0
/

6I1
∑∞

j=1 jυ2
)−1/3

and C27 = I2C26
/

3I1
∑∞

j=1 jυ2 . Equations (42)
show that large B clusters dominate over the corresponding A clusters, which is independent
of the initial concentrations A0 and B0. From equations (42) we also find that the typical mass
of species A in this system grows as t1/3(ln t)2/3 while that of species B grows as t1/3(ln t)−1/3.
So, the clusters of either type in this subcase will also coagulate completely at the end.

When υ1 < −1 and υ2 < −1, the scaling solutions of the cluster mass distributions are
obtained
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Table 2. Summary of the results of the second model.

Case Summary of the results

υ1 � 0, υ2 � 0 (i) If υ1 = 0 or υ2 = 0, both species scale according to the logarithm-correction form
(ii) If υ1 = υ2 = 0, both species scale according to the conventional form
(iii) If γ > 1, both species scale according to the conventional form
(iv) If γ = 1, both species scale according to the exponential-correction form
(v) If γ < 1, both species fall in the gelation transition after a certain time

υ1 � 0, υ2 < 0 (i) Species B scales according to the conventional form with constant exponents
(ii) If 0 > υ2 > −1, species A scales according to the modified form with S(t) ∝ t−υ2

(iii) If υ2 = −1, species A scales according to the modified form with S(t) ∝ t (ln t)−1

(iv) If υ2 < −1, species A scales according to the modified form with S(t) ∝ t

υ1 < 0, υ2 < 0 (i) If η > 1, the cluster mass distribution of species A obeys the modified scaling form
while that of species B obeys the conventional one
(ii) If η < 1, the cluster mass distribution of species A obeys the conventional scaling form
while that of species B obeys the modified one
(iii) If η = 1, the cluster mass distribution of either species obeys the conventional scaling form

ak(t) � A0C
2
28t

−2/3 exp(−x) x = C28kt−1/3

bk(t) � B0C
2
29t

−2/3 exp(−y) y = C29kt−1/3
(43)

where C28 = [
3A0B0

(
I2

∑∞
j=1 jυ1

)2/
2I1

∑∞
j=1 jυ2

]−1/3
and C29 = [

3A0B0
(
I1

∑∞
j=1 jυ2

)2/
2I2

∑∞
j=1 jυ1

]−1/3
. Equations (43) show that for this system with indices υ1 < −1 and

υ2 < −1, both species always scale according to the conventional form of equation (10) with
the universal exponents w = 2/3 and z = 1/3. The results also indicate that for this subcase,
the clusters of one type can bond together completely with the help of clusters of another type.

To sum up, we investigate the kinetic behaviour of the two-species catalysis-driven
aggregation processes in several different cases. A detailed summary of the results is given in
table 2, where γ = 1/υ1 + 1/υ2 and η = I2

∑∞
i=1 iυ1−1

/
I1

∑∞
j=1 jυ2−1.

4. Summary

We have studied the kinetic behaviour of the two-species catalysis-driven aggregation
processes. Based on the mean-field rate equations, we analysed the dependence of the kinetics
of the system on the catalyst. It was found that the evolution behaviour of the cluster mass
distributions depends crucially on the details of the rate kernel.

For the first model in which aggregation of A clusters proceeds at a rate KA(i; j ; l) ∝ lυ

(l is the size of B catalyst), the evolution behaviour of species A is dependent on the value of
index υ. We found that the cluster mass distribution obeys the conventional scaling law in the
case of υ � 0 while it approaches the modified scaling form in the υ < 0 case.

We also investigated a two-species mutually catalysis-driven aggregation model with the
reaction rate kernel KA(i; j ; l) = I1l

υ1 and KB(i; j ; l) = I2l
υ2 . The results indicated that the

kinetics of the system depends strongly on the values of υ1 and υ2. In some special cases,
the rate coefficients I1 and I2 also play an important role in the kinetic behaviour of the cluster
mass distributions. For the cases of υ1, υ2 � 0 or I2

∑∞
i=1 iυ1−1 = I1

∑∞
j=1 jυ2−1, the cluster

mass distribution of either species approaches the conventional scaling law; while for other
cases the species with the smaller value of

∑∞
i=1 iυl−1

/
Il (l = 1, 2) obeys the conventional

scaling law while another species scales according to the modified form.



3978 J Ke and Z Lin

Acknowledgments

This project is supported by the National Natural Science Foundation of China under grant
nos 10305009, 10275048 and 10175008 and by the Zhejiang Provincial Natural Science
Foundation of China under grant no 102067.

References

[1] Friedlander S K 1977 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (New York: Wiley)
[2] Silk J 1980 Star Formation (Sauverny: Geneva Observatory)
[3] Family F and Landau D P 1984 Kinetics of Aggregation and Gelation (Amsterdam: North-Holland)
[4] Meakin P 1983 Phys. Rev. Lett. 51 1119

Meakin P 1992 Rep. Prog. Phys. 55 157
[5] Vicsek T and Family F 1984 Phys. Rev. Lett. 52 1669
[6] Vicsek T, Meakin P and Family F 1985 Phys. Rev. A 32 1122

Racz Z 1985 Phys. Rev. A 32 1129
[7] Kang K and Redner S 1984 Phys. Rev. A 30 2833
[8] Family F and Meakin P 1989 Phys. Rev. A 40 3836
[9] Song S and Poland D 1992 Phys. Rev. A 46 5063

[10] Oshanin G and Moreau M 1995 J. Chem. Phys. 102 2977
[11] Ispolatov S, Krapivsky P L and Redner S 1998 Eur. Phys. J. B 2 267
[12] Leyvraz F and Redner S 2002 Phys. Rev. Lett. 88 068301
[13] Ke J and Lin Z 2002 Phys. Rev. E 66 050102
[14] Burlatsky S F and Ovchinnikov A A 1980 Russ. J. Phys. Chem. 54 1741

Burlatsky S F and Moreau M 1995 Phys. Rev. E 51 2363
[15] Oshanin G, Stemmer A, Luding S and Blumen A 1995 Phys. Rev. E 52 5800

Oshanin G and Blumen A 1998 J. Chem. Phys. 108 1140
[16] Toxvaerd S 1998 J. Chem. Phys. 109 8527
[17] Oshanin G and Burlatsky S F 2002 J. Phys. A: Math. Gen. 35 L695

Oshanin G and Burlatsky S F 2003 Phys. Rev. E 67 016115
[18] Ke J and Lin Z 2002 Phys. Rev. E 66 062101
[19] Ke J and Lin Z 2003 J. Phys. A: Math. Gen. 36 3683
[20] Spouge J L 1984 Phys. Rev. Lett. 60 871
[21] Ernst M H, Hendriks E M and Ziff R M 1982 J. Phys. A: Math. Gen. 15 L743

Ziff R M, Ernst M H and Hendriks E M 1983 J. Phys. A: Math. Gen. 16 2293
[22] Krapivsky P L 1993 Physica A 198 135


